\qquad

C. U. SHAH UNIVERSITY

Winter Examination-2022

Subject Name: Linear Algebra- I

Subject Code: 4SC03LIA1
Semester: 3
Date: 23/11/2022

Branch: B.Sc. (Mathematics)

Time: 11:00 To 02:00 Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:
a) If V is Vector Space then which of the following is not true?

For $\forall \alpha, \beta \in R$ and $\bar{x}, \bar{y} \in V$
(a). $\propto \bar{x} \notin V$
(b). $\bar{x}+\bar{y} \in V$
(c). $\propto(\bar{x}+\bar{y})=\propto \bar{x}+\propto \bar{y}$
(d). $(\alpha \beta) \bar{x}=\alpha(\beta \bar{x})$
b) Set $A=\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\}$ is base of vector space V then
(a). A is linearly independant
(b). A is linearly dependent
(c). $S P A=V$
(d). both (a) and (b)
c) Every \qquad set of vector space can be extended to form a basis.
(a). linearly independant
(b). linearly dependent
(c). empty
(d). non empty
) V is vector space and $\operatorname{dim} V=4$. If A is basis of V then number of vectors in A are
(a). 4
(b). 3
(c). 2
(d). 5
e) If $T: U \rightarrow V$ be any linear transformation, then
(a). $N_{T} \subset \mathrm{U}$
(b). $N_{T} \subset \mathrm{~V}$
(c). $N_{T} \subset R_{T}$
(d). None of these
f) A Linear transformation $T: U \rightarrow U$ is called \qquad
(a). linear operator
(b). linear functional
(c). both (a) and (b)
(d). None of these
g) If $u \in R^{3}$ is an Euclidean space, $u=<2,1,-1>$ then $\|u\|=$ \qquad .
(a). 6
(b). 5
(c). $\sqrt{6}$
(d). $\sqrt{5}$
h) If $T(x, y)=(x-y, 2 x-y, 3 x-y)$ then find $T(1,2)$.
i) True or false: Identity matrix is Linearly Independent.
j) True or false: Union of two subspace of vector space V is also subspace of vector space V.
k) Define: Linear Transformation.
l) Define: Inner product space.

Attempt any four questions from Q-2 to Q-8

Q-4 Attempt all questions
A Show that the set $\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\}$ is linearly dependent iff \exists a vector \bar{v}_{k},
$2 \leq k \leq n$, which is linear combination of its preceeding vectors $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k-1}$.
B Let $T: U \rightarrow V$ be any linear transformation. Then prove that Range of T
$R_{T}=\{T(u) / u \in U\}$ is subspace of V .
C Check whether $T: R^{3} \rightarrow R^{3}$ defined as for $\forall(x, y, z) \in R^{3}$,
$T(x, y, z)=(x-y, y-z, z-x)$, is a Linear Transformation

Q-5 Attempt all questions

A For a linear transformation $T: R^{2} \rightarrow R^{3}$ defined as $T(x, y)=(x, x+y, y)$

$$
\begin{equation*}
\forall(x, y) \in R^{2}, \text { find } R_{T}, N_{T}, r(T), n(T) \tag{14}
\end{equation*}
$$

B Let $T: R^{2} \rightarrow R^{2} ; T(x, y)=(x,-y) ; \forall(x, y) \in R^{2} \quad$ and let $\quad B_{1}=$05 $\{(1,0),(0,1)\} \& B_{2}=\{(1,1),(1,-1)\}$ be two basis of R^{2} then find [$\left.T ; B_{1}, B_{2}\right]$.
C Find the linear transformation $T: R^{3} \rightarrow R^{2}$ such that
$T\left(e_{1}\right)=(1,1), T\left(e_{1}+e_{2}\right)=(1,0), T\left(e_{1}+e_{2}+e_{3}\right)=(1,-1)$.

Q-6 Attempt all questions

A State and prove Rank-Nullity Theorem.
B Let $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in R^{2}$.07

Define $\langle u, v\rangle=4 u_{1} v_{1}+u_{2} v_{1}+4 u_{1} v_{2}+4 u_{2} v_{2}$ then prove that ($R^{2},<\cdot,>$) is an inner product space.
C Let R^{4} be the Euclidean inner product. Find the cosine of the angle between the vectors $u=(1,0,1,0), v=(-3,-3,-3,-3)$

Q-7 \quad Attempt all questions
A If W_{1} and W_{2} be two subspace of finite dimensional vector space V then $\mathbf{0 7}$ prove that $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$
B Find cosine angle between $u=(1,2)$ and $v=(0,1)$, also verify CauchySchwarz Inequality.
C Verify Pythagorean theorem for vectors $u=(3,0,1,0,4,-1)$ and $v=(-2,5,0,2,-3,-18)$.

Q-8 \quad Attempt all questions
A If $u=\left(u_{1}, u_{2}, u_{3}\right), v=\left(v_{1}, v_{2}, v_{3}\right) \in R^{3}$, Define $\langle u, v\rangle=2 u_{1} v_{1}+$
$u_{2} v_{2}+u_{3} v_{3}$ then prove that $\langle u, v\rangle$ is an inner product space on R^{3}.
B Check whether set $W=\{(x, y, z) / x-2 y+3 z=0 ; x, y, z \in R\}$ is 05 subspace of R^{3}.
C Define: (i). Linear Independence, (ii) Linear span of a Set 03

