C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Linear Algebra- I

Subject Code: 4SC03LIA1			Branch: B.Sc. (Mathematics)	Branch: B.Sc. (Mathematics)	
Semest	er: 3	Date: 23/11/2022	Time: 11:00 To 02:00	Marks: 70	
Instruct (1) (2) (3) (4)	ions: Use o Instru Draw Assu	of Programmable calculator & an actions written on main answer by neat diagrams and figures (if ne me suitable data if needed.	y other electronic instrument is prohi ook are strictly to be obeyed. cessary) at right places.	ibited.	
Q-1	a)	Attempt the following question If <i>V</i> is Vector Space then which For $\forall \alpha, \beta \in R$ and $\overline{x}, \overline{y} \in V$ $(a). \propto \overline{x} \notin V$ $(c). \propto (\overline{x} + \overline{y}) = \propto \overline{x} + \propto \overline{y}$	of the following is not true? $(b).\overline{x} + \overline{y} \in V$ $(d). (\propto \beta)\overline{x} = \alpha(\beta\overline{x})$	(14) (01)	
	b)	Set $A = {\overline{v}_1, \overline{v}_2,, \overline{v}_n}$ is base c (a). A is linearly independent (c). $SPA = V$	of vector space V then (b). A is linearly dependent (d). both (a) and (b)	(01)	
	c)	Every set of vector sp (a). linearly independant (c). <i>empty</i>	ace can be extended to form a basis. (b). linearly dependent (d). non empty	(01)	
	d)	V is vector space and dimV = 4 vectors in A are (a). 4 (b). 3 (c)	c. If A is basis of V then number ofc). 2 (d). 5	(01)	
	e)	If $T: U \to V$ be any linear transfer (a). $N_T \subset U$ (b). $N_T \subset V$ (c)	formation, then c). $N_T \subset R_T$ (d). None of these	(01)	
	f)	A Linear transformation $T: U \rightarrow$ (a). linear operator (c). both (a) and (b)	U is called (b). linear functional (d). None of these	(01)	
	g)	If $u \in R^3$ is an Euclidean space, (a). 6 (b). 5	$u = < 2, 1, -1 > \text{then } u = \$ (c). $\sqrt{6}$ (d). $\sqrt{5}$	(01)	
	h) i)	If $T(x, y) = (x - y, 2x - y, 3x)$ True or false: Identity matrix is	 y) then find T(1,2). Linearly Independent. 	(01) (01)	

	j)	True or false: Union of two subspace of vector space V is also subspace of vector space V.	(01)
	k) l)	Define: Linear Transformation. Define: Inner product space.	(02) (02)
Attemp	t ar	ny four questions from Q-2 to Q-8	
Q-2	A	Attempt all questions Let $V = \{(x, y)/x > 0, y > 0, x, y \in R\}$ and $(a, b), (c, d) \in V$ $(a, b) + (c, d) = (ac, bd)$ and $\propto (a, b) = (a^{\propto}, b^{\propto})$ Check whether V is	(14) 07
	B	Prove that Intersection of two subspaces W_1 and W_2 of a vector space V is also a subspace.	05
	С	Show that the set $A = \{(1, -2, 3), (4, 11, 9), (-3, 6, -9)\}$ is Linearly Depndent.	02
Q-3	A B C	Attempt all questions Prove that the set $A = \{(1,2,1), (2,1,0), (1,-1,2)\}$ forms a basis of R^3 . Express $v = (3,4,6)$ is a linear combination of $\bar{v}_1 = (1,-2,2), \bar{v}_2 = (0,3,4)$ and $\bar{v}_3 = (1,2,-1)$ If S is non empty sub set of vector space V then show that SP S is sub space of V.	(14) 05 05 04
Q-4	A	Attempt all questions Show that the set $\{\bar{v}_1, \bar{v}_2,, \bar{v}_n\}$ is linearly dependent iff \exists a vector \bar{v}_k , $2 \le k \le n$, which is linear combination of its preceeding vectors	(14) 05
	B	v_1, v_2, \dots, v_{k-1} . Let $T: U \to V$ be any linear transformation. Then prove that Range of T $R_T = \{T(u) u \in U\}$ is subspace of V.	05
	С	Check whether $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as for $\forall (x, y, z) \in \mathbb{R}^3$, T(x, y, z) = (x - y, y - z, z - x), is a Linear Transformation	04
Q-5	A	Attempt all questions For a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as $T(x, y) = (x, x + y, y)$ $\forall (x, y) \in \mathbb{R}^2$, find \mathbb{R}_T , N_T , $r(T)$, $n(T)$.	(14) 05
	B	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$; $T(x, y) = (x, -y)$; $\forall (x, y) \in \mathbb{R}^2$ and let $B_1 = \{(1,0), (0,1)\} \& B_2 = \{(1,1), (1, -1)\}$ be two basis of \mathbb{R}^2 then find $[T; B_1, B_2]$.	05
	С	Find the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(e_1) = (1,1), T(e_1 + e_2) = (1,0), T(e_1 + e_2 + e_3) = (1,-1).$	04
Q-6	A B	Attempt all questions State and prove Rank-Nullity Theorem. Let $u = (u_1, u_2), v = (v_1, v_2) \in \mathbb{R}^2$. Define $\langle u, v \rangle = 4u_1v_1 + u_2v_1 + 4u_1v_2 + 4u_2v_2$ then prove that $(\mathbb{R}^2 \leq u \leq v)$ is an inner product space	(14) 07 05
	С	Let R^4 be the Euclidean inner product. Find the cosine of the angle between the vectors $u = (1,0,1,0), v = (-3, -3, -3, -3)$	02

Q-7 Attempt all questions

- A If W_1 and W_2 be two subspace of finite dimensional vector space V then prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2)$
- **B** Find cosine angle between u = (1,2) and v = (0,1), also verify Cauchy-Schwarz Inequality.
- C Verify Pythagorean theorem for vectors u = (3,0,1,0,4,-1) and 03 v = (-2,5,0,2,-3,-18).

Q-8 Attempt all questions

(14)

03

(14)

- A If $u = (u_1, u_2, u_3), v = (v_1, v_2, v_3) \in R^3$, Define $\langle u, v \rangle = 2u_1v_1 + 06$ $u_2v_2 + u_3v_3$ then prove that $\langle u, v \rangle$ is an inner product space on R^3 .
- **B** Check whether set $W = \{(x, y, z)/x 2y + 3z = 0; x, y, z \in R\}$ is **05** subspace of R^3 .
- C Define: (i). Linear Independence, (ii) Linear span of a Set